Sådan beregnes naturlig frekvens

Posted on
Forfatter: Lewis Jackson
Oprettelsesdato: 14 Kan 2021
Opdateringsdato: 17 November 2024
Anonim
Sådan beregnes naturlig frekvens - Videnskab
Sådan beregnes naturlig frekvens - Videnskab

Indhold

Alle svingende bevægelser - bevægelse af en guitarstreng, en stang, der vibrerer efter at have været ramt, eller afvisning af en vægt på en fjeder - har en naturlig frekvens. Den grundlæggende situation til beregning involverer en masse på en fjeder, som er en simpel harmonisk oscillator. I mere komplicerede tilfælde kan du tilføje effekterne af dæmpning (langsommere svingninger) eller opbygge detaljerede modeller med drivkrafter eller andre faktorer, der tages i betragtning. Det er dog let at beregne den naturlige frekvens for et simpelt system.


TL; DR (for lang; læste ikke)

Beregn den naturlige frekvens af en simpel harmonisk oscillator ved hjælp af formlen:

f = √(k / m) ÷ 2π

Indsæt fjederkonstanten for det system, du overvejer stedet for k, og den svingende masse for m, og evaluer derefter.

Den naturlige frekvens af en simpel harmonisk oscillator defineret

Forestil dig en fjeder med en kugle fastgjort til slutningen med masse m. Når opsætningen er stationær, strækkes fjederen delvist ud, og hele opsætningen er i ligevægtsposition, hvor spændingen fra den udstrakte fjeder matcher tyngdekraften, der trækker kuglen nedad. At bevæge bolden væk fra denne ligevægtsposition tilføjer enten spænding til fjederen (hvis du strækker den nedad) eller giver tyngdekraften muligheden for at trække bolden ned uden at spændingen fra fjederen modvirker den (hvis du skubber bolden opad). I begge tilfælde begynder kuglen at svinge rundt i ligevægtspositionen.


Den naturlige frekvens er hyppigheden af ​​denne svingning, målt i hertz (Hz). Dette fortæller dig, hvor mange svingninger der sker per sekund, hvilket afhænger af fjederens egenskaber og massen af ​​kuglen, der er knyttet til den. Plukkede guitarstrenge, stænger ramt af en genstand og mange andre systemer svinger med en naturlig frekvens.

Beregning af den naturlige frekvens

Følgende udtryk definerer den naturlige frekvens af en simpel harmonisk oscillator:

f = ω /2π

Hvor ω er svingfrekvensen for svingningen, målt i radianer / sekund. Følgende udtryk definerer vinkelfrekvensen:

ω = √(k / m)

Så dette betyder:

f = √(k / m) ÷ 2π

Her, k er forårskonstanten for det pågældende fjeder og m er massen på bolden. Fjederkonstanten måles i Newton / meter. Fjedre med højere konstanter er stivere og tager mere kraft for at forlænge.


For at beregne den naturlige frekvens ved hjælp af ligningen ovenfor skal du først finde ud af fjederkonstanten for dit specifikke system. Du kan finde forårskonstanten for reelle systemer gennem eksperimentering, men for de fleste problemer får du en værdi for det. Indsæt denne værdi på stedet for k (i dette eksempel, k = 100 N / m), og divider det med objektets masse (for eksempel m = 1 kg). Tag derefter kvadratroten af ​​resultatet, inden du deler dette med 2π. Gå gennem trinnene:

f = √ (100 N / m / 1 kg) ÷ 2π

= √ (100 sek−2) ÷ 2π

= 10 Hz ÷ 2π

= 1,6 Hz

I dette tilfælde er den naturlige frekvens 1,6 Hz, hvilket betyder, at systemet svinger lidt over halvanden gang i sekundet.