Hvad er sammenhængende fraktioner?

Posted on
Forfatter: Laura McKinney
Oprettelsesdato: 5 April 2021
Opdateringsdato: 17 November 2024
Anonim
Hvad er sammenhængende fraktioner? - Videnskab
Hvad er sammenhængende fraktioner? - Videnskab

Indhold

En på hinanden følgende brøk er et tal skrevet som en serie af skiftevis multiplikative inverser og heltaleadditeringsoperatorer. På hinanden følgende fraktioner studeres i matematikens nummerteoriforgrening. På hinanden følgende fraktioner er også kendt som fortsatte fraktioner og udvidede fraktioner.


På hinanden følgende fraktioner

På hinanden følgende fraktioner er ethvert tal skrevet i formen a (0) + 1 / (a ​​(1) + 1 / (a ​​(2) + ...))) hvor a (0), a (1), a (2) ) og så videre er heltalskonstanter. Den på hinanden følgende brøk kan fortsætte på ubestemt tid eller endeligt. Ethvert reelt tal kan skrives som en endelig eller uendelig rækkefølge i træk.

Rationelle tal

Rationelle tal kan skrives i formen p / q, hvor p og q begge er heltal. Rationelle tal er en af ​​de to kategorier af reelle tal. Ethvert rationelt tal kan skrives som en endelig fortløbende brøk i form af (0) + 1 / (a ​​(1) + 1 / (a ​​(2) + ... 1 / a (n))) hvor a (0) ), a (1) ... a (n) er også heltalskonstanter.

Irrationelle tal

Irrationelle tal kan ikke skrives i formen p / q, hvor "p" og "q" er to heltal. Almindelige irrationelle tal inkluderer √2, pi og e. Irrationelle tal kan ikke skrives som endelige på hinanden følgende brøk, men de kan skrives som uendelige på hinanden følgende brøk.


Beregning af endelige sammenhængende fraktioner

For at beregne værdien af ​​en endelig på hinanden følgende brøk i form af en (0) + 1 / (a ​​(1) + 1 / (a ​​(2) + ... 1 / a (n))), hvor a (0) , a (1) ... a (n) er heltal, start fra bunden af ​​brøkdelen. Løs 1 / a (n), tilføj en (n-1), del 1 med dette nummer og gentag, indtil du løser brøkdelen. Overvej for eksempel 1 + 1 / (2 + 1 / (3 + 1/4)) = 1 + 1 / (2 + 1 / (13/4)) = 1 + 1 / (2 + 4/13) = 1 + 1 / (30/13) = 1 + (13/30) = 43/30.