Hvordan bruges radikale udtryk og rationelle eksponenter i det virkelige liv?

Posted on
Forfatter: Monica Porter
Oprettelsesdato: 18 Marts 2021
Opdateringsdato: 19 November 2024
Anonim
Simplifying Radicals With Variables, Exponents, Fractions, Cube Roots - Algebra
Video.: Simplifying Radicals With Variables, Exponents, Fractions, Cube Roots - Algebra

Indhold

Har du nogensinde undret dig over, hvor og hvornår du ville bruge dine skolematematikfærdigheder i det virkelige liv? En rationel eksponent er en eksponent i form af en brøk. Ethvert udtryk, der indeholder kvadratroten af ​​et tal, er et radikalt udtryk. Begge har applikationer i den virkelige verden inden for områder som arkitektur, tømrerarbejde og murværk. Radikale udtryk bruges i finansielle industrier til at beregne formler for afskrivninger, boliginflation og renter. Elektriske ingeniører bruger også radikale udtryk til målinger og beregninger. Biologer sammenligner dyreoverfladearealer med radikale eksponenter for størrelsesforligninger i videnskabelig forskning


Eksempler på rationelle eksponenter

I en rationel eksponent er nævneren eller bundtallet roden. Mens tælleren eller øverste nummer er den nye eksponent. I de følgende eksempler angiver gulerodssymbolet, at den højre halvdel er eksponenten for venstre. For eksempel:

x ^ (1/2) = √x (firkantet rod af X)

x ^ (1/3) = 3√x (terning rod af X)

Eksempler på radikale udtryk

Et radikalt udtryk er ethvert udtryk eller ligning, der indeholder en firkantet rod. Kvadratrotsymbolet angiver, at antallet indeni er en radikal. Antallet inden i den firkantede rod kaldes radicand. Variable tal kan også være radikale udtryk. For eksempel:

√ x + y

√16

12 + √ x

√3 * -X

Eksempler på reelle verdener af rationelle eksponenter

Den finansielle industri bruger rationelle eksponenter til at beregne renter, afskrivninger og inflation i områder som boligkøb.


For at beregne inflationen for et hjem, der forøger værdien fra p1 til p2 for eksempel over en periode på n år, er den årlige inflation (udtrykt som en decimal) i = (p2 / p1) ^ (1 / n) -1.

For at beregne sammensatte renter er formlen F = P (1 + i) ^ n, hvor F er den fremtidige værdi, og P er den aktuelle værdi, i er renten og n er antallet af år. Hvis du ville beregne den sammensatte rente på $ 1.000 i 18 måneder med 5 procent, ville formlen være F = 1000 (1 + 0,05) ^ (3/2).

Eksempler på virkelige verden på radikale udtryk

Radikale udtryk er almindelig geometri og trigonometri, især når man beregner trekanter. Inden for tømrer og murarbejde kommer trekanter ofte i spil, når de designer eller bygger bygninger, der kræver vinkelmåling.

Forholdet mellem siderne i en 30 ° - 60 ° - 90 ° højre trekant er 1: 2: √3, og forholdet mellem siderne i en 45 ° - 45 ° - 90 ° højre trekant er 1: 1: √2 .


Inden for elektroteknikken har brugen af ​​radikale udtryk at gøre med at bestemme, hvor meget strøm der strømmer gennem kredsløb. En af de enkleste formler inden for elektroteknik er for spænding, V = √PR, hvor P er effekten i watt, og R er modstanden i måling af ohm.