Indhold
Forholdet fortæller dig, hvordan to dele af en helhed forholder sig til hinanden. For eksempel har du måske et forhold, der sammenligner hvor mange drenge der er i din klasse versus hvor mange piger der er i din klasse, eller et forhold i en opskrift, der fortæller dig, hvordan mængden af olie sammenlignes med mængden af sukker. Når du ved, hvordan de to tal i et forhold relaterer til hinanden, kan du bruge disse oplysninger til at beregne, hvordan forholdet relaterer sig til den virkelige verden.
En hurtig gennemgang af forhold
Det kan hjælpe at tænke på forhold som fraktioner af to grunde. For det første kan du faktisk skrive forhold som brøk; 1:10 og 1/10 er de samme ting. For det andet, ligesom i brøkdele, er den rækkefølge, du skriver tal i for et forhold, vigtig.
Lad os sige, at du sammenligner forholdet mellem salt og sukker i en opskrift, der kræver 1 del salt til 10 dele sukker. Du skriver numrene i samme rækkefølge som de poster numrene repræsenterer. Så da salt kommer først, skal du skrive "1" for 1 del salt først, efterfulgt af "10" for 10 dele sukker. Det giver dig et forhold på 1 til 10, 1:10 eller 1/10.
Forestil dig nu, at du skulle ændre antallet og lade dit forhold mellem salt og sukker være 10: 1. Pludselig har du 10 dele salt til hver 1 del sukker. Uanset hvad du laver med et forhold på 10: 1 kommer til at smage meget anderledes end hvis du har brugt 1:10-forholdet!
Endelig, ligesom fraktioner, er forholdene ideelt angivet i deres enkleste vilkår. Men de starter ikke altid på den måde. Så ligesom en brøkdel af 3/30 kan forenkles til 1/10, kan et forhold på 3:30 (eller 4:40, 5:50, 6:60 osv.) Forenkles til 1:10.
Løsning for manglende dele i en ratio
Du kan muligvis fortælle, hvordan du løser et forhold på 1:10 ved simpel undersøgelse: For hver 1 del, du har af den første ting, har du 10 dele af den anden ting. Men du kan også løse dette forhold ved hjælp af krydsmultiplikationsteknikken, som du derefter kan anvende til sværere forhold.
Forestil dig som eksempel, at du har fået at vide, at der er et forhold på 1:10 mellem venstrehåndede og højrehåndede studerende i din klasse. Hvis der er tre venstrehåndede studerende, hvor mange højrehåndede studerende er der?
Du har faktisk givet to forhold i eksemplet: Det første, 1/10, er det kendte forhold mellem venstrehåndede og højrehåndede studerende i klassen. Det andet forhold også repræsenterer antallet af venstrehåndede til højrehåndede studerende i klassen, men du mangler et element. Skriv de to forhold ud som lig med hinanden med variablen x fungerer som en pladsholder for det manglende element. Så for at fortsætte eksemplet, har du:
1/10 = 3/x
Multiplicer tælleren for den første brøkdel med nævneren for den anden brøk, og indstil denne lig med tælleren for den anden brøk gange den nævner for den første brøk. Indstil de to produkter som ens. Fortsætter eksemplet giver dette dig:
1(x) = 3(10)
Med et vanskeligere problem, skal du nu løse for x. Men i dette tilfælde er det alt, hvad du skal gøre for at få en værdi forenkling af ligningen x:
x = 30
Din manglende mængde er 30; måske er du nødt til at se tilbage på det originale problem for at minde dig selv om, at dette repræsenterer antallet af højrehåndede studerende i klassen. Så hvis der er 3 venstrehåndede studerende i klassen, er der også 30 højrehåndede studerende.