Sådan deles radikaler

Posted on
Forfatter: Monica Porter
Oprettelsesdato: 22 Marts 2021
Opdateringsdato: 18 November 2024
Anonim
Sådan deles radikaler - Videnskab
Sådan deles radikaler - Videnskab

Indhold

I matematik er en radikal ethvert tal, der inkluderer rodtegnet (√). Nummeret under rodtegnet er en firkantet rod, hvis intet superskript går forud for rodtegnet, en terningroot er et superskript 3 forud for det (3√), en fjerde rod, hvis en 4 går foran den (4√) osv. Mange radikaler kan ikke forenkles, så at dividere med en kræver specielle algebraiske teknikker. For at gøre brug af dem skal du huske disse algebraiske ligheder:


√ (a / b) = √a / √b

√ (a • b) = √a • √b

Numerisk firkantet rod i nævneren

Generelt ser et udtryk med en numerisk firkantet rod i nævneren sådan ud: a / √b. For at forenkle denne brøk rationaliserer du nævneren ved at multiplicere hele fraktionen med √b / √b.

Fordi √b • √ b = √b2 = b, udtrykket bliver

a√b / b

Eksempler:

1. Rationaliser nævneren til fraktion 5 / √6.

Løsning: Multiplicer fraktionen med √6 / √6

5√6/√6√6

5√6 / 6 eller 5/6 • √6

2. Forenklet brøkdel 6√32 / 3√8

Løsning: I dette tilfælde kan du forenkle ved at dele numrene uden for det radikale tegn og dem deri i to separate operationer:

6/3 = 2

√32/√8 = √4 = 2

Udtrykket reducerer til

2 • 2 = 4

Opdeling med Cube Roots

Den samme generelle procedure gælder, når radikalet i nævneren er en terning, fjerde eller højere rod. For at rationalisere en nævner med en terningrode, skal du kigge efter et tal, der, når ganget med tallet under radikaltegnet, producerer et tredje magtnummer, der kan tages ud. Generelt rationaliserer tallet a /3√b ved at multiplicere med 3√B2/3√B2.


Eksempel:

1. Rationalisere 5 /3√5

Multiplicer tælleren og nævneren med 3√25.

(5 • 3√25)/(3√5 • 3√25)

53√25/3√125

53√25/5

Tallene uden for det radikale tegn annullerer, og svaret er

3√25

Variabler med to udtryk i nævneren

Når en radikal i nævneren inkluderer to udtryk, kan du normalt forenkle det ved at multiplicere med dets konjugat. Konjugatet inkluderer de samme to udtryk, men du vender tegnet mellem dem. For eksempel er konjugatet af x + y x - y. Når du multiplicerer disse sammen, får du x2 - y2.

Eksempel:

1. Rationaliser nævneren til 4 / x + √3

Løsning: Multiplicer top og bund med x - √3

4 (x - √3) / (x + √ 3) (x - √3)

Forenkle:

(4x - 4√3) / (x2 - 3)